Impact of the Sub-Grid Scale Turbulence Model in Aeroacoustic Simulation of Human Voice
Impact of the Sub-Grid Scale Turbulence Model in Aeroacoustic Simulation of Human Voice
Blog Article
In an aeroacoustic simulation of human voice production, the effect of the sub-grid scale (SGS) model on the acoustic spectrum was investigated.In the first step, incompressible airflow in a 3D model of larynx with vocal folds undergoing prescribed two-degree-of-freedom oscillation was simulated by laminar and Large-Eddy Simulations (LES), using the One-Equation and Wall-Adaptive Local-Eddy (WALE) SGS models.Second, the aeroacoustic sources and the Anodizing Service sound propagation in a domain composed of the larynx and vocal tract were computed by the Perturbed Convective Wave Equation (PCWE) for vowels [u:] and [i:].The results show that the SGS model has a significant impact not only on the flow field, but also on the spectrum of the sound sampled 1 cm downstream of the lips.
With the WALE model, which is known to handle the near-wall and high-shear regions more precisely, the simulations predict significantly higher peak volumetric flow rates of air than those of the One-Equation model, only slightly lower than the laminar simulation.The usage of the WALE SGS model also results in higher sound Pentair Deck Jet Parts pressure levels of the higher harmonic frequencies.